Master Controller For High Energy Electron Source Part II

By Team Members:

Esayas Abera (EE) Cyrus Safi (CE) Jay Vakil (EE)

> Sponsor Company: STI Optronics Faculty & Industry Advisor: Dr. Wayne Kimura

Outline

- Background
- Master Control system overview
- Top Level approach
- Hardware Connections for master controller
- Circuit schematic
- Hardware components
- Software Approach

- Software Design
- Circuit schematic for breadboard Testing
- Testing and results
- Future Tasks
- Reflections
- Acknowledgements

Team Member Contributions

Esayas Abera

- Circuit design
- Breadboard design
- Presentation slides
- LabVIEW Front Panel Design
- Report Writing

Cyrus Safi

- Soldering
- Proposal
 Preparation
- LabVIEW programming

Jay Vakil (Project lead)

- Breadboard design
- LabVIEW Block
 Diagram
- Proposal preparation
- Report Writing

Background

- STI Optronics (STI) is small business specializing in research and development on laser applications and advanced high-energy accelerators
- STI is developing new type of high-energy electron source for accelerators based upon diamond technology
 - > Experiment located at Stony Brook University, Long Island, NY
- Complex system requiring remote control and monitoring of many components
 - > Power supplies for driving electromagnets
 - > Pneumatic actuators for inserting electron beam position monitors (BPMs)
 - > Adjustable DC voltages needed to control RF components
- Capstone project was to design and test Master Control (MC) system for controlling components
 - > Consists of Local PC using National Instruments (NI) LabVIEW software
 - > Use National Instruments (NI) analog output and input modules to connect to hardware
 - > NI modules not immediately available used Arduino microcontroller as substitute interface between LabVIEW and hardware

Master Control System Overview

	Thermionic gun Faraday cups 1 & 2 Vacuum monitor RF controller	Oscilloscope	Local PC	.))	Remote PC
	Solenoid 1 & 2 Trim 1 & 2 Dipole magnet BPM control	NI input and output modules housed in NI chassis			
5	Helmholtz coil 1 & 2				

Top Level Approach

Hardware Connections for Master Controller

UNIVERSITY of WASHINGTON

Hardware Components

- NI 9264 (National Instruments output module)
- Has a built-in DAC
- 16 analog output channels
- 16-bit DAC resolution
- Output range
 - Max +/- 10.65V
 - Max +/- 10.65 V
 - Typical +/- 10.5 V

- NI 9209 (National Instruments input module)
- Has a built-in ADC
- 16 analog input channels
- 24 bits ADC resolution
- Input range
 - Min +/- 10.2V
 - Max +/- 10.2V
 - Typical +/-10.4 input

NI chassis: cDAQ-9174

 KEPCO (20-10) BOPs (Bipolar Operational Power Supplies) (x9)

• 24V DC Power Supply (x1)

UNIVERSITY of WASHINGTON

Hardware Components (cont.)

- LC 200 relay (x2)
 Single pole double throw
 Needs 5V to power up
 - DAC board
- Controls two actuators

 Arduino UNO microcontroller (x1)

- Local PC to use LabView and program Arduino
- Core i7 512GB
 - 16GB Ram

• MCP4725/12-bit DAC (x2)

UNIVERSITY of WASHINGTON

Software Approach

- Use National Instruments (NI) LabView
- Use Arduino as substitute for NI output module

Software Design

LabVIEW Block Diagram

17

Software Design

LabVIEW Front Panel

13

Circuit Design for Breadboard Testing

- Actual hardware located at Stony Brook University, New York
- Need to substitute components to test Master Controller system
- NI analog output module on back-order, could only test NI input module

14

Testing and Results

Testing and Results (Video)

Future Tasks

Replace	Update	Test
Replace	Update LabVIEW	Test system to
microcontroller with	program to include	ensure desired
NI 9264 output	NI 9264 output	power is delivered
module	module	to each component

Reflections

- It is not easy to get hold of technicians, so contact them early
- Ensure that hardware components you chose are available and can be shipped on time
- It is very important to communicate with your team members
- Don't depend on circuit diagrams you found online
- Make sure that each team member understands details of project
- Always plan to finish before due date
- Don't give up

Acknowledgment

- Dr. Wayne Kimura
- Dr. Kaibao Nie
- Dr. Kyoung Tae Kim
- Progressive Automation INC.
- KEPCO INC. (power supplies manufacturer)

